Math Field Day 2012 Short Course Event Symbols, Formulas, Conversion Factors, Constants, and Definitions (foot-pound-second system of units - USCS)

Symbols	
a	acceleration in $\mathrm{ft}^{2} / \mathrm{sec}^{2}$
A	area in t^{2}
cfs	cubic feet per second, $\mathrm{ft}^{3} / \mathrm{sec}$
d	depth or diameter
f	Darcy-Weisbach friction factor
g	gravitational acceleration in $\mathrm{ft} / \mathrm{sec}^{2}=32.2$
$\mathrm{ft} / \mathrm{sec}^{2}$	

Conversion Factors
$7.48 \mathrm{gal}=1 \mathrm{ft}^{3}$
$12 \mathrm{in}=1 \mathrm{ft}$
$60 \mathrm{~s}=1 \mathrm{~min}$
$144 \mathrm{in}^{2}=1 \mathrm{ft}^{2}$

Unit Conversions
$g p m \rightarrow t^{3} / \mathrm{sec} \Rightarrow \frac{g a l}{\min } \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \times \frac{1 f t^{3}}{7.48 \mathrm{gal}}$
$p s i \rightarrow p s f \Rightarrow \frac{l b}{\mathrm{in}^{2}} \times \frac{144 \mathrm{in}^{2}}{1 f t^{2}}$

Constants
$g=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$w=62.4 \mathrm{lb} / \mathrm{ft}^{3} \quad$ (water)

Equations of Fluid Flow	
1. Equation of Continuity	$Q=A_{1} V_{1}=A_{2} V_{2}=$ constant
2. Energy Equation (Bernoulli Theorem)	$\frac{p_{1}}{w}+\frac{v_{1}{ }^{2}}{2 g}+z_{1}-h_{L}=\frac{p_{2}}{w}+\frac{v_{2}{ }^{2}}{2 g}+z_{2}$
2a. Pressure head $\quad h_{p}=\frac{p}{w}$	
2b. Velocity head	$h_{v}=\frac{v^{2}}{2 g}$
2c. Static head	$h_{s}=z=$ elevation above a reference
3. Manning formula for open channel flow (use only in the foot-pound-second system)	$R=\frac{\text { cross sec tional area of flow }}{\text { wetted perimeter }}$
3a. Hydraulic Radius formula (use to get R in the Manning formula)	$h_{L}=f\left(\frac{L}{d}\right)\left(\frac{V^{2}}{2 g}\right)$
4. Darcy-Weisbach formula, head loss for flow in pipes under pressure	$R^{2 / 3} S^{1 / 2}$

Hydraulic Jump (constant flow in rectangular channel)
5a. Depths Relationship: $q^{2} / g=y_{1} y_{2}\left(\frac{y_{1}+y_{2}}{2}\right)$
5b. Specific Energy (E): $E=$ depth + velocity head $E=y+V^{2} / 2 g$
5c. Loss of head $=E_{1}-E_{2}$

©

