Chapter 11 Equilibrium and Elasticity

Example 1:

Two men are carrying a 6 m long, 40 kg plank by its ends. A 30 kg object sits 1.5 m from one of the ends. What load is each man carrying?

Example 2:

What is the magnitude of the minimum horizontal force that can be applied to the axle of a 100 kg , 40 cm radius lawn roller and roll it over a 10 cm tall curb?

Example 3:

A rope connects a 30 kg block to a block of unknown mass. The rope passes over a pulley at the top of a smooth 53° incline. The pulley's mass is 5 kg and its radius is 0.125 m . The 30 kg block rests on the incline and the unknown block hangs from the pulley. Calculate the mass of unknown block if the system is in static equilibrium.

Example 4:

A 10 kg sphere sits in a 60° wedge. If one side of the wedge is vertical find the normal forces if there is no friction.

Example 5:

When a crane lifts a 5000 kg load, the support cable that attaches to the center of the boom is horizontal and the boom makes a 53° angle with the horizon. If the boom of the crane is 30 m long and has a mass of 2000 kg what is the tension in the support cable?

Example 6:

A 20 kg sign hangs from a $6 \mathrm{~kg}, 2 \mathrm{~m}$ long horizontal beam. A cable runs from the outer end of the beam back to a point on the wall 1.5 m above the support point. The inner edge of the sign is 1 m from the wall; the outer edge is 2 m from the wall. What is the tension in the cable?

Example 7:

A 100 kg painter wishes to climb as far up a ladder as is possible before the ladder starts to slip. The 30 kg ladder is 10 m long and it makes a 60° angle with the horizon. The wall is smooth and the floor has a coefficient of friction of 0.2 . How far along the ladder can the painter climb?

