Physics 200

Chapter 33: Alternating Current Circuits (Lecture Examples)

Ex:1 Derive the current in a purely resistive " AC " circuit as a function of time.
Ex:2 Derive the reactance in a purely resistive " AC " circuit.
Ex:3 Determine the phase angle in a purely resistive " AC " circuit.
Ex:4 Derive the current in a purely inductive " AC " circuit as a function of time.
Ex:5 Derive the reactance in a purely inductive " AC^{\prime} " circuit.
Ex:6 Determine the phase angle in a purely inductive "AC" circuit.
Ex:7 Derive the current in a purely capacitive " AC " circuit as a function of time.
Ex:8 Derive the reactance in a purely capacitive "AC" circuit.
Ex:9 Determine the phase angle in a purely capacitive "AC" circuit.
Ex:10 Derive the impedance of a series LRC circuit.
Ex:11 Derive the average power of a series LRC circuit?
Ex:12 A transformer has 400 turns on the primary side and 1600 on the secondary side. On the primary side the current is 20 amps and the rms voltage is 110 V . Calculate the current and voltage on the secondary side?

Ex:13 A generator produces 100 A at 440 V it is stepped up to 44000 V and sent through a transmission line whose $\mathrm{R}=50 \Omega$ compare the $\%$ power lost to what it would be if V had not been stepped up.

Ex:14 Derive the gain of a RC low pass filter.

