Physics 200

Chapter 24 Gauss's Law (Homework)

1. A very large conducting sheet is placed in an electric field, E. Determine the charge density on the top and bottom surface of the sheet.
2. An infinitely long non-conducting solid cylinder with a radius, R, has a constant charge density, ρ. Determine the electric field strength a distance, r, from the center of the cylinder if r $<R$ and if $r>R$.
3. Determine the magnitude of the electric field between the inner and outer conductors of a coaxial cable. The inner conductor has a charge density, $-\lambda$, and the outer conductor has a charge density, λ.
4. Two identical non-conducting spheres each having a radius "a" are connected by a long piece of string whose length is "L". Determine the tension in the string if each sphere has a uniformly distributed charge, Q. (Assume L >> a)
5. An infinite non-conducting plate has thickness, t, and charge density, ρ. Determine the magnitude of the electric field a distance, x, from the midpoint of the plate. (Assume $x<t / 2$)
6. Two concentric conducting spheres have radii of " a " and " b " and respectively charges of " q " and " Q ". What is the magnitude of the electric field a distance, r, from the center of the inner sphere when $\mathrm{r}<\mathrm{a}$, when $\mathrm{a}<\mathrm{r}<\mathrm{b}$ and when $\mathrm{b}<\mathrm{r}$? (Assume $\mathrm{a}<\mathrm{b}$.)
7. Two conducting sphere's have radii "a" and " b " and are separated by a distance, D. Calculate the strength of the electric field at the midpoint between the spheres if they have the same charge density, σ.
8. Two non-conducting sphere's have radii " a " and " b " and are separated by a distance, D . Calculate the strength of the electric field at the midpoint between the spheres if they have the same charge density, ρ.
9. A solid non-conducting sphere has charge density that depends only upon " r ", the distance from the sphere's center. How does the charge density depend upon " r " if the magnitude of the electric field is the same at every location within the sphere?
10. A particle of mass, m, and charge, -q , moves diametrically through a uniformly charged nonconducting sphere of radius, R, and charge, Q. Calculate the angular frequency of the particle's simple harmonic motion.
