Physics 200

Chapter 25 Electric Potential (Homework)

1. Three charges, Q, are located at the vertices of an equilateral triangle that is length, a, on a side. Calculate the electric potential energy of the system.
2. Four charges, Q, are located at the corners of a square that is length, a, on a side. Calculate the electric potential energy of the system.
3. Two electric charges, q and Q, are separated by a distance, a. Determine the electric potential at the midpoint between them.
4. Three charges, Q, are at the vertices of an equilateral triangle that is length, a, on a side. Calculate the electric potential at the midpoint of one of the sides.
5. Four charges, Q, are located at the corners of a square that is length, a, on a side. Calculate the electric potential at the center of the square.
6. A non-uniformly charged $(\lambda=\beta x)$ rod with length, L, lies on the x-axis with its left end at the origin. Calculate the electric potential at the location ($-\mathrm{a}, 0$).
7. A non-conducting rod with charge density, λ, is bent into a semicircle of radius, a. What is the electric potential at the center of curvature?
8. A thin line of positive charge is bent into a semicircle of radius, a. The linear charge density along the semicircle is given by $\lambda=\beta \cos \theta$. Calculate the electric potential at the center of curvature. (θ is zero at the midpoint of the semicircle.)
9. Calculate the electric potential at the point $(\mathrm{L} / 2, \mathrm{a})$ if a non-uniformly charged rod lies on the x - axis with one end at the origin and the other end at $(L, 0)$. The charge density is given by $\lambda=$ β x.
10. A circular washer (inner radius, a, and outer radius, b) is positioned so that its center is at the origin and the x-axis is perpendicular to the plane of the washer. If the washer has a nonuniform charge density, $\sigma=\alpha / r$, on its right-hand surface what is the electric potential at the location, (D, 0).
