## Physics 200

## Chapter 27 Current and Resistance (Homework)

1. A small sphere carrying a charge, $Q$, is swung in a circle at $N$ revolutions per minute. What is the current in the circle?
2. A wire whose radius is " $a$ " carries current, $I$. What is the electron drift speed in the wire? (Density of the material is " $\rho$ ".)
3. A potential difference, V , is maintained across a wire of length, L . The wire's cross sectional area is " $A$ " and the resistivity of the wire is " $\rho$ ". What is the current density in the wire?
4. A potential difference, V , causes a current, I , in a wire of length, L , that has a radius, a. Calculate the resistivity of the wire.
5. A wire has a resistance, R. The wire is cut into four pieces of equal length and the pieces are then connected side by side forming a new wire that has one fourth the length and four times the area of the original wire. What is the resistance of the new wire?
6. Calculate the resistance of a hollow circular cylinder. The inner radius is "a" and the outer radius is " b " and the cylinder has length, "L". (Current enters one end of the cylinder and leaves the outer surface.)
7. The small end of a truncated square cone has sides of length, a, and the large end has and sides of length, $b$. The truncated cone has height, h . Calculate the resistance of the cone if the current enters the small and exits the large end of the cone.
8. A washer has an inner radius, $a$, and an outer radius, $b$, and a thickness, $t$. Its resistivity is " $\rho$ ". What is the resistance of the washer when current flows radially outward?
9. An immersion heater melts a mass, $m$, of ice in time, $t$, when the voltage is "V". Find the current through the heater. (Latent heat of ice is "L".)
10. A potential difference, V , is maintained across a wire of length, L . The wire's cross sectional area " $A$ " and has a resistivity, $\rho$. What is the rate at which energy is being dissipated by the wire?
