Chap 36: Geometric optics (continued)
Example 1: How far behind a plane mirror does the image appear to be?
Example 2: Find the image location, image type and the magnification for a concave mirror with $\mathrm{f}=50 \mathrm{~cm}$ and $\mathrm{o}=75 \mathrm{~cm}$.

Example 3: Find the image location, image type and the magnification for a concave mirror with $\mathrm{f}=50 \mathrm{~cm}$ and $\mathrm{o}=25 \mathrm{~cm}$.

Example 4: Find the image location, image type and the magnification for a convex mirror with $\mathrm{f}=-30 \mathrm{~cm}$ and $\mathrm{o}=40 \mathrm{~cm}$.

Example 5: Find the image location, image type and the magnification for a convex mirror with $\mathrm{f}=-30 \mathrm{~cm}$ and $\mathrm{o}=20 \mathrm{~cm}$.

Example 6: If a real image is 4 times bigger than the object and the object located 50 cm in front of the mirror, what is the radius of curvature for the mirror?

Example 7: The water in Trafalgar Fountain appears to be 18 in deep. What is the actual depth of the water?

Example 8: A smooth block of ice ($\mathrm{n}=1.31$) rests on the floor. If the block is 40 cm thick, how far below the top surface does the bottom surface appear to be?

Example 9: A convex lens has an 18 cm curve on the left side and a 24 cm curve on the right side, if $\mathrm{n}=1.5$, what is the focal length of the lens?

Example 10: Find the image location, image type and the magnification for a convex lens with $\mathrm{f}=50 \mathrm{~cm}$ and $\mathrm{o}=75 \mathrm{~cm}$.

Example 11: Find the image location, image type and the magnification for a concave lens with $\mathrm{f}=-50 \mathrm{~cm}$ and $\mathrm{o}=75 \mathrm{~cm}$.

Example 12: Two convex lenses are 30 cm apart. The lens on the left has a 25 cm focal length, and the one on the right has $\mathrm{f}=40 \mathrm{~cm}$. Find the final image location, image type and the magnification if the object is 50 cm to the left of the left-hand lens.

Example 13: A convex and a concave lens are 50 cm apart. The convex lens is on the left and has a 40 cm focal length, and the concave one on the right has $\mathrm{f}=-60 \mathrm{~cm}$. Find the final image location, image type and the magnification if the object is 100 cm to the left of the left-hand lens.

