\qquad
1: \quad Solve for $\mathrm{x}: \quad \frac{2}{3}+\frac{1}{3} x=6$
2: Evaluate $45 \div 3^{2} x(x-1)$, for $x=3$

3: Solve for y (y on the left, everything else on the right): $\frac{y}{4}-x=2$

4: Solve for L: $P=2 L+2 W$
5: Solve for h: $A=\frac{1}{2} b h$
6: Leon left a $\$ 4$ tip for a meal that cost $\$ 25$. What percent of the cost of the meal was the tip?
7: Convert to decimal notation: 0.7%
8 : What number is 35% of 240 ?
9: Graph $-5 \leq x<2$

10: Solve this inequality and graph $2 x \leq x+9$

11: Solve this inequality (x on the left, everything else on the right): $7+3 \mathrm{x}<34$

12: Five times the sum of 3 and some number is 70 . What is the number?

13: A "two by four" is twice as wide as it is high. If the perimeter is 10.5 " what are the actual dimensions of the "two by four"?
\qquad
Solve problems 14,15 and 16 using the addition and multiplication principles. Remember the unknown is on the left and the constants on the right.

14: $6+5 y \geq 26$

15: $5-6 y>25$
16: $7+3 x<34$

17: Find the coordinates of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
Enter the answer as an ordered pair ; example: $(1,2)$

18: Plot the following ordered pairs.
$(5,-2),(-3,-2),(-3,3)$

\qquad
19: In which quadrant is this point located? $(7,-2)$
20: Clear the denominator (rewrite equation to eliminate the denominator): $A=\frac{x+y}{3}+1$

21: In April 2004, Dan Wheldon won the Indy Japan 300 with a time of 3:29:56 for the 300 mi race. At one point Wheldon was 80 mi closer to the finish than the start. How far had Wheldon travelled at that point.

22: The sum of three consecutive numbers is 60 . Find the numbers.

23: Combine like terms : $-3+8 \mathrm{x}+4+(-10 \mathrm{x})$

24: Subtract these fractions $\frac{7}{a}-\frac{5}{a}$
25: Divide $\frac{7}{a} \div \frac{5}{a}$

