\qquad
Direction: Write neatly; show your work in an organized fashion.

1. Assign variable, \& Translate, DON'T SOLVE: In 1999, $\$ 4.6$ billion worth of tea was sold in the U.S. This was $\$ 2.8$ billion more than the amount sold in 1990. How much tea was sold in 1990 ?	2. Use the Commutative law to rewrite: $4(x y)=$ \qquad Use the Associative law to rewrite: $4(x y)=$ \qquad
3. $\frac{5}{12}+\frac{4}{9}$	4. $\frac{9}{16} \div 3$
5. Write and inequality with the same meaning as $-3<x$.	6. True or False: $9 \geq 9$
7. Rewrite the subtraction as addition and simplify the answer (show both). $-2-(-7)$	8. $\frac{2}{3} \cdot\left(-\frac{3}{7}\right)$
9. Simplify, show steps: $120-6^{2} \div\|-4\| \cdot 8$	10. Simplify, show steps: $\frac{4(18-8)+7 \cdot 9}{9^{2}-8^{2}}$

SOLUTIONS

1. Assign variable, \& Translate, DON'T SOLVE:	2. Use the Commutative law to rewrite:
In 1999, $\$ 4.6$ billion worth of tea was sold in the	$4(x y)=4(y x)$ or (xy)4, many answers
U.S. This was $\$ 2.8$ billion more than the amount sold in 1990. How much tea was sold in 1990 ?	Use the Associative law to rewrite:
Set $x=$ to amount of tea sold in 1990 in \$billion $x=4.6-2.8$	$4(x y)=(4 x) y$ only one answer
3. $\frac{5}{12}+\frac{4}{9}=$	4. $\frac{9}{16} \div 3$
$=\left(\frac{3}{3}\right)\left(\frac{5}{12}\right)+\left(\frac{4}{4}\right)\left(\frac{4}{9}\right)$	$=\left(\frac{9}{16}\right) \div\left(\frac{3}{1}\right)$
$=\frac{15}{36}+\frac{16}{36}$	$=\left(\frac{9}{16}\right) \cdot\left(\frac{1}{3}\right)$, divde by 3
$=\frac{31}{36}$	3
- $\frac{31}{36}$	16

5. Write and inequality with the same meaning as $-3<x$.

$$
x>-3
$$

7. Rewrite the subtraction as addition and simplify the answer (show both).
$-2-(-7)=-2+7=5$
8. Simplify, show steps:

$$
120-6^{2} \div|-4| * 8
$$

$=120-6^{2} \div 4$ * 8
$=120-36 \div 4$ * 8
$=120-9$ * 8
$=120-72$
$=48$
8. $\frac{2}{3} \cdot\left(-\frac{3}{7}\right)$
$=\left(\frac{2}{3}\right) \cdot\left(-\frac{3}{7}\right)$, divde by 3
$=-\frac{2}{7}$
6. True or False: $\quad 9 \geq 9$

True

10. Simplify, show steps:

$$
\begin{aligned}
& \frac{4(18-8)+7 \cdot 9}{9^{2}-8^{2}} \\
&= \frac{4(18-8)+7 \cdot 9}{9^{2}-8^{2}} \\
&= \frac{4(10)+7 \cdot 9}{9^{2}-8^{2}} \\
&= \frac{4(10)+7 \cdot 9}{81-64} \\
&= \frac{40+63}{81-64}=\frac{103}{17} \\
& \hline
\end{aligned}
$$

