Trigonometry, Mckeague, $6{ }^{\text {th }}$ edition
Homework Proof

5.4 \#49

The EASY way requires using an identity that you have not memorized.
Prove: $\tan \left(\frac{B}{2}\right)=\csc B-\cot B$.
Start with:
$\tan \left(\frac{B}{2}\right)$
$=\frac{1-\cos B}{\sin B}$
$=\frac{1}{\sin B}-\frac{\cos B}{\sin B}$
$=\csc B-\cot B$.
Therefore, $\tan \left(\frac{B}{2}\right)=\csc B-\cot B$.

See below on page 2

5.4 \#49

The HARDER way can be done with identities that you have memorized.
Prove: $\tan \left(\frac{B}{2}\right)=\csc B-\cot B$.
Start with:

$$
\tan \left(\frac{B}{2}\right)=\frac{\sin \left(\frac{B}{2}\right)}{\cos \left(\frac{B}{2}\right)}
$$

I need some identities to move forward, but I don't have much.
Also, I'd like to get rid of those half angles
which means I need double angle identites.
I'll force one by multiple by a "fancy one".
$=\frac{\sin \left(\frac{B}{2}\right)}{\cos \left(\frac{B}{2}\right)} \cdot\left(\frac{\sin \left(\frac{B}{2}\right)}{\sin \left(\frac{B}{2}\right)}\right)=\frac{\sin ^{2}\left(\frac{B}{2}\right)}{\sin \left(\frac{B}{2}\right) \cos \left(\frac{B}{2}\right)}$
Notice the bottom is almost like the double angle of sine.
It just needs a factor of 2 which I can multiply.
$=\frac{\sin ^{2}\left(\frac{B}{2}\right)}{\sin \left(\frac{B}{2}\right) \cos \left(\frac{B}{2}\right)} \cdot\left(\frac{2}{2}\right)=\frac{2 \sin ^{2}\left(\frac{B}{2}\right)}{2 \sin \left(\frac{B}{2}\right) \cos \left(\frac{B}{2}\right)}=\frac{2 \sin ^{2}\left(\frac{B}{2}\right)}{\sin \left(2\left(\frac{B}{2}\right)\right)}=\frac{2 \sin ^{2}\left(\frac{B}{2}\right)}{\sin B}$
$=\frac{2 \sin ^{2}\left(\frac{B}{2}\right)}{\sin B}$
Now the hard part. How to get rid of the half angle on top.
I am going to need to force in a double angle identity again,
But instead of multiplying by a "fancy one", I am going to add a "fancy zero".
$=\frac{1-1+2 \sin ^{2}\left(\frac{B}{2}\right)}{\sin B}=\frac{1-\left(1-2 \sin ^{2}\left(\frac{B}{2}\right)\right)}{\sin B}=\frac{1-\cos \left(2 \cdot\left(\frac{B}{2}\right)\right)}{\sin B}=\frac{1-\cos B}{\sin B}$
$=\frac{1-\cos B}{\sin B}=\frac{1}{\sin B}-\frac{\cos B}{\sin B}=\csc B-\cot B$.

Therefore, $\quad \tan \left(\frac{B}{2}\right)=\csc B-\cot B$.
Well, like I said. This is the harder way, but study it and learn some of those techniques I used to force identities to come up (e.g. the fancy one, the fancy zero).

