Find the exact values of each without the calculator.

1. $2 \cot 45^{\circ}$
2. $3 \sec 60^{\circ}$
3. Evaluate $\sin 27^{\circ} 40^{\prime}$ with the calculator

Use your calculator to find θ if θ is an acute angle and:
4. $\sin \theta=.8290$
5. $\sec \theta=9.5668$
6. In a rt. triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{a}=225$ and $\mathrm{c}=354$. Solve the triangle.
7. In a rt. triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{A}=57^{\circ} 10^{\prime}$, and $\mathrm{a}=37.8$. Solve the triangle.
8. A woman standing 42.5 feet from a building notices that t6he angle of elevation to the top of the building is 52.2°. Find the height of the building.
9. A man walks with a bearing of $N 31^{\circ} 30^{\prime} \mathrm{W}$ for 12 miles. How far west and how far north did he walk?

Give the exact value without using your calculator.
10. $\cos 45^{\circ}$
11. $\cot 30^{\circ}$
12. $\sin \left(60^{\circ}\right)$
13. $\sec \left(30^{\circ}\right)$
14. If vector \mathbf{V} has a magnitude of 5.0 and makes an angel of 30° with the positive x axis, find the magnitude of $\mathbf{V}_{\mathbf{x}}$ and $\mathbf{V}_{\mathbf{y}}$.
15. $\quad \mathbf{V}_{\mathbf{x}}$ has a magnitude of 11 and $\mathbf{V}_{\mathbf{y}}$. has a magnitude of 31 . What is the acute angel formed by \mathbf{V} on the positive x-axis?
16. Luke pushes Beth on the swing. Luke pushed Beth's swing out through an angle of 25.5° and holds her there. If Beth weighs 95.5 pounds, find the magnitude of force that Luke must push horizontally to hold Beth in static equilibrium.

ANSWERS

1) 2 2) 6
2) .4643 4) 56.0° 5) 84°
3) $\mathrm{A}=39.5^{\circ}$?, $\mathrm{B}=50.5^{\circ}$?, $\mathrm{b}=273$
4) $b=24.4$ in, $B=32^{\circ} 50^{\prime}, c=45.0$ in
5) $54.8 \mathrm{ft} \quad$ 9) North $=10.2$, West $=6.3$
6) $\sqrt{ } 2 / 2$ 11) $\sqrt{ } 3$
7) $\sqrt{ } 3 / 2$
8) $2 / \sqrt{ } 3$
9) $\left|V_{x}\right|=4.3,\left|V_{y}\right|=2.5$
10) 70°
11) $|\mathrm{H}|=45.6 \mathrm{lb}$.
